To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?
نویسندگان
چکیده
The phenotypic responses of functional traits in natural populations are driven by genetic diversity and phenotypic plasticity. These two mechanisms enable trees to cope with rapid climate change. We studied two European temperate tree species (sessile oak and European beech), focusing on (i) in situ variations of leaf functional traits (morphological and physiological) along two altitudinal gradients and (ii) the extent to which these variations were under environmental and/or genetic control using a common garden experiment. For all traits, altitudinal trends tended to be highly consistent between species and transects. For both species, leaf mass per area displayed a positive linear correlation with altitude, whereas leaf size was negatively correlated with altitude. We also observed a significant increase in leaf physiological performance with increasing altitude: populations at high altitudes had higher maximum rates of assimilation, stomatal conductance and leaf nitrogen content than those at low altitudes. In the common garden experiment, genetic differentiation between populations accounted for 0-28% of total phenotypic variation. However, only two traits (leaf mass per area and nitrogen content) exhibited a significant cline. The combination of in situ and common garden experiments used here made it possible to demonstrate, for both species, a weaker effect of genetic variation than of variations in natural conditions, suggesting a strong effect of the environment on leaf functional traits. Finally, we demonstrated that intrapopulation variability was systematically higher than interpopulation variability, whatever the functional trait considered, indicating a high potential capacity to adapt to climate change.
منابع مشابه
Altitudinal Genetic Variations Among the Fagus orientalis Lipsky Populations in Iran
Nuclear simple sequence repeats (nSSRs), together with 16 different enzyme loci, were used to analyzegenetic diversity and differentiation among beech (Fagus orientalis Lipsky) populations along two altitudinalgradients in Hyrcanian forests of Iran. Both enzymes and nSSR analyses revealed a high level ofgenetic diversity in natural populations of F. orientalis. The genetic div...
متن کاملEffect of Altitude and Growing Season on Some Physiological Properties of Leaf from Persian Oak (Quercus brantii) in Zagros Forest (Case study: Ilam)
Abstract Understanding in variation in tree leaf related to altitude and climate change define the plant adaptation. These variations will predict their respond to the future changes. According to the vast distribution of Persian oak (Quercus brantii) trees in Zagros forest, the study of structural changes and the recognition the Persian oak ecological needs is crucial for their conservation a...
متن کاملAdaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient.
We assessed the adaptive potential of seed and leaf phenology in 10 natural populations of sessile oak (Quercus petraea) sampled along two altitudinal transects using common garden experiments. Population differentiation for both phenological traits was observed with high-altitude populations germinating and flushing later than low altitude ones. However, high genetic variation and heritability...
متن کاملAltitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis.
Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of...
متن کاملAre plant pathogen populations adapted for encounter with their host? A case study of phenological synchrony between oak and an obligate fungal parasite along an altitudinal gradient.
Biotrophic fungal pathogens are expected to have adapted to their host plants for phenological synchrony, to optimize the possibility of contacts leading to infections. We investigated the patterns and causes of variation in phenological synchrony in the oak-powdery mildew pathosystem, a major disease in natural ecosystems. The study was carried out along an altitudinal gradient, representing a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2011